Neutrino Physics: The T2K Experiment

Wei-Chih Huang

National Tsing Hua University

January 11, 2019

Overview

- 1 Physics Behind the Experiment
 - 3-Flavor Neutrino Oscillation
 - The Probability of the Oscillation
 - Physical Process
 - Detection Method
- 2 T2K Experiment
 - T2K Collaboration
 - Goal of The Experiment
 - Experiment Setup
 - T2K Neutrino Beamline
 - Advantage of off-axis beam
- Results Data
 - ullet u_{μ} Disappearance
 - ν_e Appearance
 - CP Violation
 - Possible Implication

Physics Behind the Experiment

- 3-Flavor Neutrino Oscillation
- The Probability of the Oscillation
- Physical Process
- Detection Method

3-Flavor Neutrino Oscillation

$\begin{array}{c} \text{Weak eigenstates} \\ \hline \begin{array}{c} v_e \\ v_\mu \\ \hline \end{array} \\ \hline \begin{array}{c} v_e \\ v_\mu \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} v_e \\ v_\mu \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} v_e \\ v_\mu \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} u_e \\ v_\mu \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} u_e \\ v_\mu \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} u_e \\ v_\mu \\ \hline \end{array} \\ \hline \begin{array}{c} u_e \\ v_\mu \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} u_e \\ v_\mu \\ \hline \end{array} \\ \hline \begin{array}{c} u_e \\ v_\mu \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} u_e \\ v_\mu \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} u_e \\ v_\mu \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} u_e \\ v_\mu \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} u_e \\ v_\mu \\ \hline \end{array} \\ \begin{array}{c} u_e \\ v_\mu \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} u_e \\ v_\mu \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} u_e \\ v_\mu \\ \hline \end{array} \\ \begin{array}{c} u_e \\ v_\mu \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} u_e \\ v_\mu \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} u_e \\ v_\mu \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} u_e \\ v_\mu \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} u_e \\ v_\mu \\ \hline \end{array} \\ \begin{array}{c} u_e \\ v_\mu \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} u_e \\ v_\mu \\ \hline \end{array} \\ \begin{array}{c} u_e \\ v_\mu \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} u_e \\ v_\mu \\ \hline \end{array} \\ \begin{array}{c} u_e \\ v_\mu \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} u_e \\ v_\mu \\ \end{array} \\ \begin{array}{c} u_e \\ v_\mu \\ \end{array} \\ \end{array} \\ \begin{array}{c} u_e \\ v_\mu \\ \end{array} \\ \end{array} \\ \begin{array}{c} u_e \\ v_\mu \\ \end{array} \\ \end{array} \\ \begin{array}{c} u_e \\ v_\mu \\$

- 6 independent parameters in 3 mixing angles, 1 complex phases, 3 mass-squared differences.
 - Mass hierarchy (sign of Δm^2_{32}) and δ_{CP} are not determined yet. \leftarrow Accelerator-based Long baseline ν oscillation experiment can address.

The Probability of the Oscillation

$$\begin{split} P(\nu_{\mu} \to \nu_{\mu}) &\simeq 1 - \left(\cos^{4}\theta_{13} \cdot \sin^{2}2\theta_{23} + \sin^{2}2\theta_{13} \cdot \sin^{2}\theta_{23}\right) \cdot \sin^{2}\left(\frac{\Delta m_{31}^{2} \cdot L}{4E_{\nu}}\right) \\ P(\nu_{\mu} \to \nu_{e}) &\simeq \sin^{2}\theta_{23}\sin^{2}2\theta_{13}\sin^{2}\left(\frac{\Delta m_{32}^{2}L}{4E_{\nu}}\right) \left(1 + \frac{2a}{\Delta m_{31}^{2}} \left(1 - 2\sin^{2}\theta_{13}\right)\right) \\ &- \sin 2\theta_{12}\sin 2\theta_{23}\sin 2\theta_{13}\sin \delta_{CP}\sin^{2}\left(\frac{\Delta m_{32}^{2}L}{4E_{\nu}}\right)\sin\left(\frac{\Delta m_{21}^{2}L}{4E_{\nu}}\right) + \cdots \\ P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) &\simeq \sin^{2}\theta_{23}\sin^{2}2\theta_{13}\sin^{2}\left(\frac{\Delta m_{32}^{2}L}{4E_{\nu}}\right) \left(1 - \frac{2a}{\Delta m_{31}^{2}} \left(1 - 2\sin^{2}\theta_{13}\right)\right) \\ &+ \sin 2\theta_{12}\sin 2\theta_{23}\sin 2\theta_{13}\sin \delta_{CP}\sin^{2}\left(\frac{\Delta m_{32}^{2}L}{4E_{\nu}}\right)\sin\left(\frac{\Delta m_{21}^{2}L}{4E_{\nu}}\right) + \cdots \end{split}$$

Physical Process

$$p + \operatorname{graphite} o \pi \xrightarrow[\operatorname{first\ layer}]{\operatorname{decay}} \mu +
u_{\mu}$$

 $\Rightarrow\!\!\mu,\, {\it p},\, \pi\, {\rm are}$ stopped by second layer of graphite, only ν_{μ} pass

low/high energy neutrino oscillate in short/long distance $600 MeV \Rightarrow 295 km$

Detection Method

 $u_{\mu} + \text{ordinary matter(water)} \rightarrow \mu^{-} \text{ or } e^{-}$ $\rightarrow \text{Cherenkov radiation}$

T2K Experiment

- T2K Collaboration
- Goal of The Experiment
- Experiment Setup
- T2K Neutrino Beamline
- Advantage of off-axis beam

T2K Collaboration

	Italy ~500 me	mbers, 63 Institutes,	11 countries	
Canada	INFN, U. Bari	Poland	Switzerland	USA
TRIUMF	INFN, U. Napoli		U. Bern	Boston U.
U. B. Columbia	INFN, U. Padova	NCBJ, Warsaw	U. Geneva	Colorado S. U.
U. Regina	INFN, U. Roma	U. Silesia, Katowice		Duke U.
U. Toronto	Japan	U. Warsaw	United Kingdom	Louisiana State U.
U. Victoria	ICRR Kamioka	Warsaw U. T.	Imperial C. London	Michigan S.U.
U. Winnipeg	ICRR RCCN	Wroclaw U.	Lancaster U.	Stony Brook U.
York U.	Kavli IPMU		Oxford U.	U. C. Irvine
	KEK		Queen Mary U. L.	U. Colorado
France	Kobe U.	Russia	Royal Holloway U.L.	U. Pittsburgh
CEA Saclay	Kyoto U.	INR	STFC/Daresbury	U. Rochester
IPN Lyon	Miyagi U. Edu.		STFC/RAL	U. Washington
LLR E. Poly.	Okayama U.	Spain	U. Liverpool	
LPNHE Paris	Osaka City U.	IFAE, Barcelona	U. Sheffield	
	Tokyo Institute of Tech	IFIC, Valencia	U. Warwick	
Germany	Tokyo Metropolitan U.	U. Autonoma Madrid		
Aachen	U. Tokyo			//K \
	Tokyo U. of Science			
	Yokohama National U.			2

Goal of The Experiment

- Precise measurement θ_{23} of $\nu_{\mu} \rightarrow \nu_{\mu}$ disappearance
- Direct search for $\nu_{\mu} \to \nu_{\rm e}$ oscillation (i.e., the confirmation that $\theta_{13}>0$)
- Search for CP violation phenomena in the lepton sector Difference between $\nu_\mu \to \nu_e$ and $\bar{\nu}_\mu \to \bar{\nu}_e$

Experiment Setup

- J-PARC(Japh proton accelerator research complex) consists of
 - LINC 400MeV
 - RCS 3GeV
 - MR 50GeV

T2K Neutrino Beamline

T2K Neutrino Beamline

T2K Detectors - Super K

$$u_{\mu} + \text{ water } \rightarrow \mu^{-} \text{ or } e^{-} \rightarrow \text{Cherenkov radiation}$$

$$\left\{ egin{array}{ll} \mu^- & o & {
m sharp \ ring} \ e^- & o & {
m diffuse \ ring} \end{array}
ight.$$

T2K Detectors - Super K

(a) muon-like event

(b) electron-like event

Advantage of off-axis beam

- higher neutrinos flux
- fewer high energy neutrinos
- less contamination in beamline

Results Data

- ullet u_{μ} Disappearance
- ullet ν_e Appearance
- CP Violation
- Possible Implication

u_{μ} Disappearance

Survival probability of $\nu_{\mu} \rightarrow$ neutrino oscillation parameters $(\sin^2 2\theta_{23}, \Delta m_{23}^2) = (1.0, 2.7 \times 10^{-3} \text{eV}^2) \pm (0.009, 5 \times 10^{-5} \text{eV}^2)$

ν_e Appearance

28 $\nu_{\rm e}$ detected, but only 4.6 expected if no oscillation ightarrow neutrino oscillation confirms

Evidence of $\nu_{\rm e}$ appearance \to open a possibility to measure CP violation in lepton sector

CP Violation

Best fit: $\delta_{CP}=-1.87(-1.43)$ for normal(inverted) ordering C.L. 2σ : (-2.99, -0.59) for normal, (-1.81, -1.01) for inverted ordering

Minimal Unitarity Violating model

To perform the test we need

- A predictive model for new physics in v oscillation to compute asymmetries
- Experimental facilities where to make the test

Many possible choices in both cases

We decide to use:

Minimal Unitarity Violating model (MUV)

MUV model

MUV model

The structure of the matrix elements of N can be obtained from oscillation experiments (especially disappearance) and weak decays

$$N = (1 + \eta) U_{PMNS}$$

Phases unconstrained

$$|\eta| = \begin{vmatrix} |\eta_{ee}| < 1.5 \cdot 10^{-3} & |\eta_{e\mu}| < 3.6 \cdot 10^{-5} & |\eta_{e\tau}| < 8.0 \cdot 10^{-3} \\ |\eta_{\mu e}| < 3.6 \cdot 10^{-5} & |\eta_{\mu\mu}| < 2.5 \cdot 10^{-3} & |\eta_{\mu\tau}| < 4.9 \cdot 10^{-3} \\ |\eta_{\tau e}| < 8.0 \cdot 10^{-3} & |\eta_{\tau\mu}| < 4.9 \cdot 10^{-3} & |\eta_{\tau\tau}| < 2.5 \cdot 10^{-3} \end{vmatrix}$$

Main features: all new moduli at O(10⁻²-10⁻³) but

 $\eta_{e\mu}$ which is of O(10⁻⁵)