Nuclear magnetic moment

Last update: April 22, 2024

A nucleus consists of one or more nucleon. Each nucleon carry two types of magnetic moment: orbital magnetic moment $\mu_l$ and spin magnetic moment $\mu_s$

\[\begin{align} \mu_l &= -g_l {e \over 2m_e} l \\ \mu_s &= -g_s {e \over 2m_e} s \end{align}\]

Nuclear magnetic moment vector $\vec{\mu} = g_l \vec{l} + g_s \vec{s}$

Nuclear magnetic moment $\mu$ \(\begin{align} \mu &= \langle (l,s),j,m_j=j | \mu_z | (l,s),j,m_j=j \rangle \\ &= \langle (l,s),j,m_j=j | \vec{\mu} \cdot \hat{j} | (l,s),j,m_j=j \rangle \end{align}\)

We have

\({\mu \over \mu_N} = {g_s\left[j(j+1)+s(s+1)-l(l+1)\right] + g_l \left[ j(j+1)+l(l+1)-s(s+1) \right] \over 2(j+1)}\) where $\mu_N={e \hbar \over 2m_p}$ is nuclear magneton (do not confuse with Bohr magneton $\mu_B={e \hbar \over 2m_e}$). Since the paired nucleons will cancel out each other, we only need to calculate the unpair ones

\[{\mu \over \mu_N} = \begin{cases} g_l \,l + {1\over2} g_s &\quad j=l+{1\over2} \\ {j\over j+1} \left[ g_l\, (l+1) - {1\over2}g_s \right] &\quad j=l-{1\over2} \end{cases}\]

${\mu \over \mu_N}$ value table

orbitprotonneutron
$0g_{7/2}$3.0070.5417
$1d_{5/2}$3.851-0.9765
$0h_{11/2}$7.2415-1.155
$1d_{3/2}$0.83040.5829
$2s_{1/2}$1.782-1.005

More accurate calculation

PhysRevC.71.044317 calculates effective $g$ factor using nuclear shell model. Take $0g_{7/2}$ for an example. The table IV shows

 protonneutron
$g_s$5.587-3.826
$g_l$10
$\delta g_s$-2.191.933
$\delta g_l$0.113-0.05

The new $g_l \rightarrow g_{l_\text{eff}}=g_l + \delta g_l$ and $g_s \rightarrow g_{s_\text{eff}}=g_s + \delta g_s$ can then be inserted to the formulae above to have a more precise estimation.

Reference and further reading