Inelastic Dark Matter-Nucleus Scattering in Stopped-pion Experiments using Transition Photons

Wei-Chih Huang Texas A&M University

In collaboration with Bhaskar Dutta, Jayden Newstead, and Vishvas Pandey

Outline

- 1. Theories and models
- 2. Experiments
- 3. Results

Nuclear Shell Model Code: BIGSTICK

It takes a long time and needs tons of RAM and CPU Is there a shortcut?

Long Wavelength Limit

$$\begin{split} \hat{\mathcal{M}}_{JM}(q) &= \frac{q^J}{(2J+1)!!} \int d^3x x^J Y_{JM} \hat{\mathcal{J}}_0(\mathbf{x}) \\ \hat{\mathcal{L}}_{JM}(q) &= \frac{-iq^{J-1}}{(2J+1)!!} \int d^3x x^J Y_{JM} \nabla \cdot \hat{\mathcal{J}}(\mathbf{x}) \\ \hat{\mathcal{T}}_{JM}^{el}(q) &= -i \frac{q^{J-1}}{(2J+1)!!} \left(\frac{J+1}{J}\right)^{1/2} \int d^3x x^J Y_{JM} \nabla \cdot \hat{\mathcal{J}}(\mathbf{x}) \\ \hat{\mathcal{T}}_{JM}^{mag}(q) &= i \frac{q^J}{(2J+1)!!} \left(\frac{J+1}{J}\right)^{1/2} \int d^3x \left[\frac{1}{J+1} \mathbf{r} \times \hat{\mathcal{J}}(\mathbf{x})\right] \cdot \nabla x^J Y_{JM} \end{split}$$

The surviving multipoles are $\hat{\mathcal{M}}_{00}, \hat{\mathcal{L}}_{1M}, \hat{\mathcal{T}}_{1M}^{el}$.

$$\hat{\mathcal{M}}_{00} = \frac{1}{\sqrt{4\pi}} F_1 \sum_{i=1}^{A} \hat{FT} \left(\sim \hat{\tau}\right)$$

Fermi doesn't contribute to inelastic scattering because it's even-even operator. It only exists in elastic scattering

 $\hat{\mathcal{T}}_{1M}^{el} = \sqrt{2}\hat{\mathcal{L}}_{1M} = \frac{i}{\sqrt{6\pi}}G_A \sum_{i=1}^{A}\hat{GT} \left(\sim \hat{\sigma}\hat{\tau}\right)$

Is GT (Gamow Teller) the shortcut?

Strength and Multipole in BIGSTICK

BIGSTICK can calculate the strength of a given operator

$$B(\mathcal{O}: i \to f) = \frac{1}{2J_i + 1} \left| (\Psi_f: J_f || \hat{\mathcal{O}}_J || \Psi_i J_i) \right|^2$$

	Strength	Multipole
Time	Short	Long
RAM & CPU	Light	Heavy
Output	Less detailed The strength and energy	Comprehensive Density matrix -> strength

Multipole has energy, spin, isospin, and density matrix Strength only has energy, strength

Cross Section in Long Wavelength Limit

 $\begin{aligned} & \operatorname{Er} \to 0 \\ & \frac{d\sigma_{inel}^{DM}}{d\cos\theta} = \frac{2e^2\epsilon^2 g_D^2 {E'}_{\chi}^2}{(2m_N E_r + m_{A'}^2)^2} \frac{1}{2\pi} \frac{4\pi}{2J+1} \\ & \times \sum_{s_i,s_f} \vec{l} \cdot \vec{l}^* \frac{g_A^2}{12\pi} |\langle J_f|| \sum_{i=1}^A \frac{1}{2} \hat{\sigma}_i \hat{\tau}_0 | J_i \rangle|^2 \end{aligned}$

Gamow-Teller (GT) operator

GT dominates the cross section! GT strength is the shortcut!

DM-Nucleus Scattering: Elastic vs Inelastic (GT)

$$\frac{d\sigma_{\rm el}^{DM}}{dE_r} = \frac{e^2 \epsilon^2 g_D^2 Z^2}{4\pi (E_\chi^2 - m_\chi^2)(2m_N E_r + m_{A'}^2)^2} F^2(E_r) \\ \times \left[2E_\chi^2 m_N \left(1 - \frac{E_r}{E_\chi} - \frac{m_N E_r}{2E_\chi^2} \right) + E_r^2 m_N \right]$$

$$\frac{d\sigma_{inel}^{DM}}{d\cos\theta} = \frac{2e^2\epsilon^2 g_D^2 {E'}_{\chi}^2}{(2m_N E_r + m_{A'}^2)^2} \frac{1}{2\pi} \frac{4\pi}{2J+1} \\ \times \sum_{s_i,s_f} \vec{l} \cdot \vec{l}^* \frac{g_A^2}{12\pi} |\langle J_f|| \sum_{i=1}^A \frac{1}{2} \hat{\sigma}_i \hat{\tau}_0 ||J_i\rangle|^2$$

$$\left(\frac{Inelastic}{Elastic}\right)_{signal} = 10^{-2} - 10^{-1}$$
$$\left(\frac{Inelastic}{Elastic}\right)_{bkg} = 10^{-4} - 10^{-3}$$

Inelastic search can be better

Inelastic DM-Nucleus Scattering (GT)

Cross section has the same form for fermion and scalar DM, only difference is the current

Fermion DM ~ 2 * scalar DM

$$\frac{d\sigma_{inel}^{DM}}{d\cos\theta} = \frac{2e^2\epsilon^2 g_D^2 E'_{\chi}^2}{(2m_N E_r + m_{A'}^2)^2} \frac{1}{2\pi} \frac{4\pi}{2J+1} \\ \times \sum_{s_i,s_f} \vec{l} \cdot \vec{l}^* \frac{g_A^2}{12\pi} |\langle J_f|| \sum_{i=1}^A \frac{1}{2} \hat{\sigma}_i \hat{\tau}_0 ||J_i\rangle|^2$$

Fermion
$$\mathcal{L} \supset g_D A'_\mu \bar{\chi} \gamma^\mu \chi + e \epsilon Q_q A'_\mu \bar{q} \gamma^\mu q \qquad \sum_{s_i, s_f} \vec{l} \cdot \vec{l}^* = 3 - \frac{1}{E_\chi E'_\chi} \left[\frac{1}{2} \left(p_\chi^2 + {p'}_\chi^2 - 2m_N E_r \right) + \frac{3m_\chi^2}{4} \right]$$
Scalar
$$\mathcal{L}_s = |D_\mu \phi|^2 \qquad \qquad \vec{l} \cdot \vec{l}^* = \frac{1}{2E_\chi E'_\chi} \left(p_\chi^2 + {p'}_\chi^2 - 2m_N E_r \right)$$

DM Flux

 $A'
ightarrow \chi ar{\chi}$ Decay in < O(-10) ns

 $\begin{array}{rcl} \pi^- + p & \rightarrow & n + A' \\ \pi^+ + n & \rightarrow & p + A' \\ \pi^0 & \rightarrow & \gamma + A' \\ \eta^0 & \rightarrow & \gamma + A' \\ e^{\pm *} & \rightarrow & e^{\pm} + A' \end{array}$

pion absorption pion absorption pion decay *dominant eta decay bremsstrahlung

Experiments and Detectors

CAPTAIN = "Cryogenic Apparatus for Precision Tests of Argon Interactions with Neutrinos"

Why Nal and CCM? They have large mass and low background

Experiment	$E_{\rm beam}$	POT	Target	Detector:				
	[GeV]	$[\mathrm{yr}^{-1}]$		target	mass	distance	angle	$E_r^{ m th}$
COHERENT	1	1.5×10^{23}	Hg	CsI[Na]	14.6 kg	19.3 m	90°	6.5 keV
				NaI[Tl]	185 kg	22 m	120°	900 keV
				NaI[T1]	3500 kg	22 m	120°	$\sim few \ keV$
CCM	0.8	$1.0 imes 10^{22}$	W	Ar	7 t	20 m	90°	25 keV

Detector Background

Deexcitation photon energy [MeV]

350 -

300

Events / 0.1 MeV 1200 1200

100

50

0 0.0

Detector	Bkg reduction	Bkg (after reduction)
COHERENT Nal	5 (ones-like bkg)	~1
ССМ	100	~100

Reduced detector bkg Background energy distribution 10^{0} CCM COHERENT NaI 75 100 125 150 175 200 Energy [MeV]

Prompt Window

200

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

time from POT onset (ns)

0

1000

1200

1400

Time (ns)

CCM

327

64.8

Nal

462

106

Dashed is our calculation No nu bkg Detector bkg rescale to 10 total

 $\epsilon^2 \alpha_D$

2

Scalar DM search at 90% CL via nucleus scattering

Dashed is our calculation Inel prompt nu bkg included Energy cut: No Timing cut: Yes

Scalar DM search at 90% CL via nucleus scattering

Conclusion

- We calculate the inelastic cross-section and event rates ratio for DM nucleus scattering.
- Gamow-Teller transitions (long wavelength limit) dominate the cross section.
- With inelastic DM, we have better probe on the parameter space.
- We can remove most of the neutrino background efficiently with prompt timing cut.

Backup slides

Inel DM scattering cross section

Convolution Plots

Raw Discrete Strength Lines

Other Cuts

Energy cut

(lower cut)

Set 1

- COHERENT Nal: 12MeV
- CCM: 16MeV

Set 2

- COHERENT Nal: 5MeV
- CCM: 10MeV

Inel nu bkg CCM / Nal

	Energy cut Set 1	Energy cut Set 2	No energy cut
Timing cut	0.74/3.16	52.7/39.5	64.8/106
No timing cut	9.32/18.25	275.4/185.3	327/462

Timing cut:

(upper cut)

- COHERENT Nal: 1 mus
- CCM: 0.3 mus

Detector Background with Energy Cut

Energy cut: set2 Timing cut: Yes

Scalar DM search at 90% CL via nucleus scattering

No nu bkg Detector bkg rescale to 10 total Energy cut: set2 Timing cut: Yes

Scalar DM search at $90\%\,$ CL via nucleus scattering

Energy cut: set1 Timing cut: No

Scalar DM search at 90% CL via nucleus scattering

Energy cut: set1 Timing cut: Yes

Energy cut: No Timing cut: No

Scalar DM search at 90% CL via nucleus scattering

Inelastic neutrino-nucleus scattering

Events

Scattering	Experiment	Elastic	Inelastic	Ratio
ν -40 Ar	COHERENT	2.27×10^{2}	3.15	7.21×10
ν - ⁴⁰ Ar	CCM	1.91×10^{4}	2.65×10^{2}	7.21×10
ν - ¹³³ Cs	COHERENT	1.16×10^{3}	1.52×10^{-2}	7.65×10^{3}
ν^{-127} I	COHERENT	1.06×10^{3}	3.75×10^{-1}	2.81×10^{3}

GT strength for neutrino scattering

30MeV nu energy

GT strength for neutrino scattering

30MeV nu energy 150 keV width Gaussian

BIGSTICK ground state to ground state comparing to Helm form factor

MPD = multipole decomposition

Delta chi squared test

$$t \equiv \sum_{i=1}^{\nu} \frac{S_i^2}{B_i} = \mathbf{E}[\chi_{S+B}^2] - \nu \qquad \nu = \text{number of bins}$$

```
confidence_limit = 0.9
deltaChi2_limit = chi2.ppf(confidence_limit, len(bkg)) - len(bkg)
def deltaChi2(sig):
    return np.sum((sig)**2 / bkg)
```

Parameter space search

```
for idx, mass in enumerate(mass_array):
    for eps in epsilon_array:
        signals = dm_signal_gen(mass, eps)
        chi2 = deltaChi2(signals)
    if chi2 > deltaChi2_limit:
        lower_array[idx] = eps
        break
```


BIGSTICK energy level and spin

¹²⁷I (BIGSTICK)

¹³³Cs (BIGSTICK)

(Exp)

BIGSTICK nuclear magnetic moments

6			in keV				
Nucleus	level n	J^{π}	μ	Expt.	E_x	Expt.	
^{127}I	1	$5/2^{+}$	3.851	2.813	0	0	
	2	$7/2^+$	3.007	2.54	37.44	57.61	
	3	$3/2^+$	0.9155	0.97	285.9	202.86	
¹³³ Cs	1	$7/2^{+}$	3.007	2.582	0	0	
	2	$5/2^{+}$	3.851	3.45	36.37	80.9979	
	3	$5/2^{+}$	2.5849	2.0	235.36	160.6101	
$^{40}\mathrm{Ar}$	1	0^{+}	0	N/A	0	0	
	2	2^{+}	0	-0.04	1118.33	1460.85	